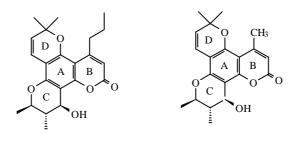
Total Synthesis of (\pm) -Cordatolide A and its Anti-HIV Activity


Qi GAO, Lin WANG*, Xiao Tian LIANG

Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050

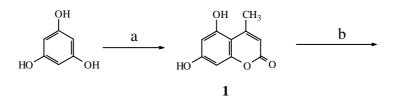
Abstract: The natural product (\pm) -cordatolide A has been synthesized by a four-step approach starting from phloroglucinol, including Pechmann reaction, Friedel-Crafts acylation, cyclization, chromenylation and Luche reduction.

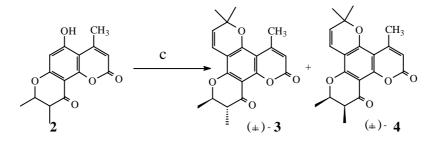
Keywords: Total synthesis, (\pm) -cordatolide A.

(+)-Cordatolide A, isolated from the light petrol extract of the leaves of *C.cordatooblangum* in 1985¹, is a novel tetracyclic coumarin. Its structure is similiar to (+)-calanolide A. (+)-calanolide A, isolated from several tropical plants of the genus calophyllum in1992², is a potent nonnucleoside inhibitor of reverse transcriptase from human immunodeficiency virus type 1 (HIV-RT). Up to now, several research groups have reported total synthesis of (\pm)-calanolide A and its stereoisomers³⁻⁵, but there was no report about the total synthesis and anti-HIV activity of the 4-position substituted derivatives of (\pm)-calanolide A and its derivatives, with structure modification focused on the 6-position and 11-position⁶⁻⁷. In order to compare the bioactivity of different 4-substituted coumpounds, we synthesized (\pm)-cordatolide A and evaluated its anti-HIV activity.

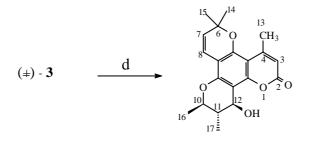
(+)-calanolide A

(+)-cordatolide A


Qi GAO et al.


Cordatolide A has three heterocyclic rings, B, C and D constructed from a phloroglucinol core (A). According to our synthetic approach, we used phloroglucinol as a starting material and then constructed the coumarin followed by the chromanone ring. The chromene ring was built last. Finally Luche reaction reduced the chromanone (\pm) -3 to give the desired product (\pm) -cordatolide A as shown in scheme 1.

Pechmann reaction on phloroglucinol with ethyl acetoacetate in the presence of concentrated sulfuric acid afforded 5,7-dihydroxy-4-methyl coumarin 1 almost quantitatively. Then acylation and ring closure of coumarin 1 in a one-step reaction using tigloyl chloride in the presence of AlCl₃ formed a key intermediate 2 in 58% yield.


The chromene ring was then introduced by the pyridine-catalyzed condensation of 1,1-diethoxy-3-methyl-2-butene. The reaction proceeded readily to give chromanone (\pm) -3 and its stereoisomer (\pm) -4 with a ratio of 1.5 : 1 in 72% yield. (\pm) -3 was isolated by column-chromatography in 50% yield. Luche reduction of the ketone (\pm) -3 using NaBH₄/CeCl₃.7H₂O at ~0°C afforded the target compound (\pm) -5 in 60% yield. The spectral data including 1H-NMR, IR, MS of (\pm) - 5 were in agreement with the data reported for the natural product (+)-cordatolide A¹. This four-step synthesis of (\pm) -cordatolide A is accomplished in about 17.4% overall yield.

Scheme 1

654

(+) cordatolide A (+) 5

Reagents and conditions:

a. CH₃COCH₂COOEt, H₂SO₄,100°C, 2h, 98%

b. H Cl , AlCl₃, PhNO₂, CS₂, 75°C, 20h, 57% c. Pyridine, Toluene, H OEt OEt , reflux, 8h, 72%

d. NaBH₄, EtOH, CeCl₃^{.7}H₂O, 0°C, 4h, 60%

Compound (\pm)-**3**: mp 203~205°C, ¹H-NMR (400 MHz, CDCl₃): δ (ppm) 6.63(d, J=10.0Hz, 1H, 8-H), 6.02 (s,1H, 3-H), 5.59 (d, J=10.0Hz, 1H, 7-H), 4.30 (dq, J=9.1, 6.4Hz, 1H, 10-H), 2.57 (s, 3H, 13-CH₃), 2.03 (dq, J=9.1, 6.9Hz, 1H, 10-H), 1.51 and 1.54 (2s, 6H, 14,15-2CH₃), 1.54 (d, J=6.4Hz, 3H, 16-CH₃), 1.21 (d, J=6.9Hz,3H,17-CH₃). Anal.Calcd.for C₂₀H₂₀O₅·0.7Et₂O (%): C, 69.82; H, 6.94. Found: C, 70.13; H, 7.03.

Compound (\pm)-5: mp 147~149°C(85°C¹), ¹H-NMR (400 MHz, CDCl₃): δ (ppm) 6.61(d, J=10.0Hz, 1H, 8-H), 5.93 (s,1H, 3-H), 5.53 (d, J=10.0Hz, 1H, 7-H), 4.72 (d, J=7.8Hz, 1H, 12-H), 3.93 (dq, J=9.1, 6.4Hz, 1H, 10-H), 2.57 (s, 3H, 13-CH₃), 2.32 (brs, 12-OH, D₂O exchangeable), 1.92 (m, 1H, 11-H), 1.45 and 1.50 (2s, 6H, 14,15-2CH₃), 1.46 (d, J=6.4Hz, 3H, 16-CH₃), 1.15 (d, J=6.8Hz,3H,17-CH₃). EI-MS m/z (%): 342, 327, 309, 271, 243, 149, 115. IR (KBr): 3437, 2974, 2929, 1728, 1585, 1381, 1147, 1107 cm⁻¹. Anal.Calcd.for C₂₀H₂₂O₅0.3H₂O (%): C, 68.72; H, 6.49. Found: C, 69.07; H, 6.55.

Qi GAO et al.

Acknowledgment

The authors are very grateful to Professor Zhi Zhong Zhao for his helpful discussions, and thank the National Natural Science Foundation of China for financial support.

References

- 1. H. R. W. Dharmaratne, S. Sotheeswaran, et al., Phytochem., 1985, 24(7), 1553.
- 2. Y. Kashman, K. R. Gustafson, et al., J. Med. Chem., 1992, 35, 2735.
- 3. B. Chenera, M. L. West, et al., J. Org. Chem., 1993, 58, 5605.
- 4. P. P. Deshparde, F. Tagliaferri, et al., J. Org. Chem., 1995, 60, 2964.
- 5. M. T. Flavin, J. D. Rizzo, et al., J. Med. Chem., 1996, 39, 1303
- 6. C. M. Zhou, L. Wang, et al., Chinese Chem. Lett., 1997, 8(10), 859.
- 7. C. M. Zhou, L. Wang, et al., ibid., 1998, 9(5), 433.

Received 9 March 1999